Copied to
clipboard

G = C23.19D8order 128 = 27

12nd non-split extension by C23 of D8 acting via D8/C4=C22

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C23.19D8, C163C47C2, C2.D168C2, C22⋊C169C2, C164C410C2, (C2×C4).114D8, (C2×C8).178D4, C87D4.9C2, C8.71(C4○D4), C2.15(C4○D16), (C2×C8).534C23, (C2×C16).46C22, (C2×D8).11C22, C22.120(C2×D8), (C22×C4).354D4, C2.18(C16⋊C22), C2.D8.19C22, C23.25D42C2, C4.16(C8.C22), (C22×C8).174C22, C2.14(C22.D8), C4.41(C22.D4), (C2×C4).802(C2×D4), SmallGroup(128,966)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C23.19D8
C1C2C4C8C2×C8C2.D8C23.25D4 — C23.19D8
C1C2C4C2×C8 — C23.19D8
C1C22C22×C4C22×C8 — C23.19D8
C1C2C2C2C2C4C4C2×C8 — C23.19D8

Generators and relations for C23.19D8
 G = < a,b,c,d,e | a2=b2=c2=e2=1, d8=c, dad-1=ab=ba, ac=ca, eae=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bcd7 >

Subgroups: 196 in 71 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, D4⋊C4, C4.Q8, C2.D8, C2×C16, C42⋊C2, C4⋊D4, C22×C8, C2×D8, C22⋊C16, C2.D16, C163C4, C164C4, C23.25D4, C87D4, C23.19D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C22.D4, C2×D8, C8.C22, C22.D8, C4○D16, C16⋊C22, C23.19D8

Character table of C23.19D8

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F16A16B16C16D16E16F16G16H
 size 1111416222288881622224444444444
ρ111111111111111111111111111111    trivial
ρ21111-111-1-111-11-1-11111-1-1111-11-1-1-1    linear of order 2
ρ311111-111111111-1111111-1-1-1-1-1-1-1-1    linear of order 2
ρ41111-1-11-1-111-11-111111-1-1-1-1-11-1111    linear of order 2
ρ51111111111-1-1-1-11111111-1-1-1-1-1-1-1-1    linear of order 2
ρ61111-111-1-11-11-11-11111-1-1-1-1-11-1111    linear of order 2
ρ711111-11111-1-1-1-1-111111111111111    linear of order 2
ρ81111-1-11-1-11-11-1111111-1-1111-11-1-1-1    linear of order 2
ρ9222220222200000-2-2-2-2-2-200000000    orthogonal lifted from D4
ρ102222-202-2-2200000-2-2-2-22200000000    orthogonal lifted from D4
ρ11222220-2-2-2-200000000000-22-2-2222-2    orthogonal lifted from D8
ρ12222220-2-2-2-2000000000002-222-2-2-22    orthogonal lifted from D8
ρ132222-20-222-2000000000002-22-2-222-2    orthogonal lifted from D8
ρ142222-20-222-200000000000-22-222-2-22    orthogonal lifted from D8
ρ152-2-2200200-2-2i02i002-2-220000000000    complex lifted from C4○D4
ρ162-2-2200200-22i0-2i002-2-220000000000    complex lifted from C4○D4
ρ172-2-2200200-20-2i02i0-222-20000000000    complex lifted from C4○D4
ρ182-2-2200200-202i0-2i0-222-20000000000    complex lifted from C4○D4
ρ192-22-2000-2i2i000000-22-22-2--2ζ165163ζ16716ζ16131611165163ζ1615169ζ16151691615169ζ165163    complex lifted from C4○D16
ρ202-22-20002i-2i000000-22-22--2-2ζ16131611ζ1615169ζ165163165163ζ16716ζ16151691615169ζ165163    complex lifted from C4○D16
ρ212-22-2000-2i2i0000002-22-2--2-2ζ16716ζ16131611ζ16151691615169ζ165163165163ζ165163ζ1615169    complex lifted from C4○D16
ρ222-22-20002i-2i0000002-22-2-2--2ζ1615169ζ165163ζ167161615169ζ16131611165163ζ165163ζ1615169    complex lifted from C4○D16
ρ232-22-2000-2i2i0000002-22-2--2-2ζ1615169ζ165163ζ16716ζ1615169ζ16131611ζ1651631651631615169    complex lifted from C4○D16
ρ242-22-20002i-2i0000002-22-2-2--2ζ16716ζ16131611ζ1615169ζ1615169ζ165163ζ1651631651631615169    complex lifted from C4○D16
ρ252-22-2000-2i2i000000-22-22-2--2ζ16131611ζ1615169ζ165163ζ165163ζ167161615169ζ1615169165163    complex lifted from C4○D16
ρ262-22-20002i-2i000000-22-22--2-2ζ165163ζ16716ζ16131611ζ165163ζ16151691615169ζ1615169165163    complex lifted from C4○D16
ρ2744-4-400000000000-22-2222220000000000    orthogonal lifted from C16⋊C22
ρ2844-4-4000000000002222-22-220000000000    orthogonal lifted from C16⋊C22
ρ294-4-4400-40040000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C23.19D8
On 64 points
Generators in S64
(1 45)(2 61)(3 47)(4 63)(5 33)(6 49)(7 35)(8 51)(9 37)(10 53)(11 39)(12 55)(13 41)(14 57)(15 43)(16 59)(17 34)(18 50)(19 36)(20 52)(21 38)(22 54)(23 40)(24 56)(25 42)(26 58)(27 44)(28 60)(29 46)(30 62)(31 48)(32 64)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(33 64)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(46 61)(47 62)(48 63)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 27)(3 15)(4 25)(5 13)(6 23)(7 11)(8 21)(10 19)(12 17)(14 31)(16 29)(18 22)(24 32)(26 30)(33 64)(34 48)(35 62)(36 46)(37 60)(38 44)(39 58)(40 42)(41 56)(43 54)(45 52)(47 50)(49 63)(51 61)(53 59)(55 57)

G:=sub<Sym(64)| (1,45)(2,61)(3,47)(4,63)(5,33)(6,49)(7,35)(8,51)(9,37)(10,53)(11,39)(12,55)(13,41)(14,57)(15,43)(16,59)(17,34)(18,50)(19,36)(20,52)(21,38)(22,54)(23,40)(24,56)(25,42)(26,58)(27,44)(28,60)(29,46)(30,62)(31,48)(32,64), (1,28)(2,29)(3,30)(4,31)(5,32)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(33,64)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,27)(3,15)(4,25)(5,13)(6,23)(7,11)(8,21)(10,19)(12,17)(14,31)(16,29)(18,22)(24,32)(26,30)(33,64)(34,48)(35,62)(36,46)(37,60)(38,44)(39,58)(40,42)(41,56)(43,54)(45,52)(47,50)(49,63)(51,61)(53,59)(55,57)>;

G:=Group( (1,45)(2,61)(3,47)(4,63)(5,33)(6,49)(7,35)(8,51)(9,37)(10,53)(11,39)(12,55)(13,41)(14,57)(15,43)(16,59)(17,34)(18,50)(19,36)(20,52)(21,38)(22,54)(23,40)(24,56)(25,42)(26,58)(27,44)(28,60)(29,46)(30,62)(31,48)(32,64), (1,28)(2,29)(3,30)(4,31)(5,32)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(33,64)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,27)(3,15)(4,25)(5,13)(6,23)(7,11)(8,21)(10,19)(12,17)(14,31)(16,29)(18,22)(24,32)(26,30)(33,64)(34,48)(35,62)(36,46)(37,60)(38,44)(39,58)(40,42)(41,56)(43,54)(45,52)(47,50)(49,63)(51,61)(53,59)(55,57) );

G=PermutationGroup([[(1,45),(2,61),(3,47),(4,63),(5,33),(6,49),(7,35),(8,51),(9,37),(10,53),(11,39),(12,55),(13,41),(14,57),(15,43),(16,59),(17,34),(18,50),(19,36),(20,52),(21,38),(22,54),(23,40),(24,56),(25,42),(26,58),(27,44),(28,60),(29,46),(30,62),(31,48),(32,64)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(33,64),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(46,61),(47,62),(48,63)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,27),(3,15),(4,25),(5,13),(6,23),(7,11),(8,21),(10,19),(12,17),(14,31),(16,29),(18,22),(24,32),(26,30),(33,64),(34,48),(35,62),(36,46),(37,60),(38,44),(39,58),(40,42),(41,56),(43,54),(45,52),(47,50),(49,63),(51,61),(53,59),(55,57)]])

Matrix representation of C23.19D8 in GL4(𝔽17) generated by

01300
4000
0002
0090
,
1000
0100
00160
00016
,
16000
01600
0010
0001
,
131100
61300
00130
0004
,
1000
01600
0010
00016
G:=sub<GL(4,GF(17))| [0,4,0,0,13,0,0,0,0,0,0,9,0,0,2,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[13,6,0,0,11,13,0,0,0,0,13,0,0,0,0,4],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

C23.19D8 in GAP, Magma, Sage, TeX

C_2^3._{19}D_8
% in TeX

G:=Group("C2^3.19D8");
// GroupNames label

G:=SmallGroup(128,966);
// by ID

G=gap.SmallGroup(128,966);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,456,422,58,1684,438,242,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^8=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^7>;
// generators/relations

Export

Character table of C23.19D8 in TeX

׿
×
𝔽