p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.19D8, C16⋊3C4⋊7C2, C2.D16⋊8C2, C22⋊C16⋊9C2, C16⋊4C4⋊10C2, (C2×C4).114D8, (C2×C8).178D4, C8⋊7D4.9C2, C8.71(C4○D4), C2.15(C4○D16), (C2×C8).534C23, (C2×C16).46C22, (C2×D8).11C22, C22.120(C2×D8), (C22×C4).354D4, C2.18(C16⋊C22), C2.D8.19C22, C23.25D4⋊2C2, C4.16(C8.C22), (C22×C8).174C22, C2.14(C22.D8), C4.41(C22.D4), (C2×C4).802(C2×D4), SmallGroup(128,966)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.19D8
G = < a,b,c,d,e | a2=b2=c2=e2=1, d8=c, dad-1=ab=ba, ac=ca, eae=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bcd7 >
Subgroups: 196 in 71 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, D4⋊C4, C4.Q8, C2.D8, C2×C16, C42⋊C2, C4⋊D4, C22×C8, C2×D8, C22⋊C16, C2.D16, C16⋊3C4, C16⋊4C4, C23.25D4, C8⋊7D4, C23.19D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C22.D4, C2×D8, C8.C22, C22.D8, C4○D16, C16⋊C22, C23.19D8
Character table of C23.19D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 16 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2i | 0 | 2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 2i | 0 | -2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -2i | 0 | 2i | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2i | 0 | -2i | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | -ζ165+ζ163 | ζ1615+ζ169 | ζ1615-ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | complex lifted from C4○D16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | -ζ165+ζ163 | ζ167+ζ16 | ζ1615-ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | complex lifted from C4○D16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | -ζ1615+ζ169 | ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | ζ1615-ζ169 | complex lifted from C4○D16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | -ζ1615+ζ169 | ζ1613+ζ1611 | -ζ165+ζ163 | ζ165-ζ163 | ζ1615-ζ169 | complex lifted from C4○D16 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1615-ζ169 | ζ1613+ζ1611 | ζ165-ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | complex lifted from C4○D16 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615-ζ169 | ζ165+ζ163 | ζ165-ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | complex lifted from C4○D16 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ165-ζ163 | ζ167+ζ16 | -ζ1615+ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | complex lifted from C4○D16 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165-ζ163 | ζ1615+ζ169 | -ζ1615+ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | complex lifted from C4○D16 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 45)(2 61)(3 47)(4 63)(5 33)(6 49)(7 35)(8 51)(9 37)(10 53)(11 39)(12 55)(13 41)(14 57)(15 43)(16 59)(17 34)(18 50)(19 36)(20 52)(21 38)(22 54)(23 40)(24 56)(25 42)(26 58)(27 44)(28 60)(29 46)(30 62)(31 48)(32 64)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(33 64)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(46 61)(47 62)(48 63)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 27)(3 15)(4 25)(5 13)(6 23)(7 11)(8 21)(10 19)(12 17)(14 31)(16 29)(18 22)(24 32)(26 30)(33 64)(34 48)(35 62)(36 46)(37 60)(38 44)(39 58)(40 42)(41 56)(43 54)(45 52)(47 50)(49 63)(51 61)(53 59)(55 57)
G:=sub<Sym(64)| (1,45)(2,61)(3,47)(4,63)(5,33)(6,49)(7,35)(8,51)(9,37)(10,53)(11,39)(12,55)(13,41)(14,57)(15,43)(16,59)(17,34)(18,50)(19,36)(20,52)(21,38)(22,54)(23,40)(24,56)(25,42)(26,58)(27,44)(28,60)(29,46)(30,62)(31,48)(32,64), (1,28)(2,29)(3,30)(4,31)(5,32)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(33,64)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,27)(3,15)(4,25)(5,13)(6,23)(7,11)(8,21)(10,19)(12,17)(14,31)(16,29)(18,22)(24,32)(26,30)(33,64)(34,48)(35,62)(36,46)(37,60)(38,44)(39,58)(40,42)(41,56)(43,54)(45,52)(47,50)(49,63)(51,61)(53,59)(55,57)>;
G:=Group( (1,45)(2,61)(3,47)(4,63)(5,33)(6,49)(7,35)(8,51)(9,37)(10,53)(11,39)(12,55)(13,41)(14,57)(15,43)(16,59)(17,34)(18,50)(19,36)(20,52)(21,38)(22,54)(23,40)(24,56)(25,42)(26,58)(27,44)(28,60)(29,46)(30,62)(31,48)(32,64), (1,28)(2,29)(3,30)(4,31)(5,32)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(33,64)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,27)(3,15)(4,25)(5,13)(6,23)(7,11)(8,21)(10,19)(12,17)(14,31)(16,29)(18,22)(24,32)(26,30)(33,64)(34,48)(35,62)(36,46)(37,60)(38,44)(39,58)(40,42)(41,56)(43,54)(45,52)(47,50)(49,63)(51,61)(53,59)(55,57) );
G=PermutationGroup([[(1,45),(2,61),(3,47),(4,63),(5,33),(6,49),(7,35),(8,51),(9,37),(10,53),(11,39),(12,55),(13,41),(14,57),(15,43),(16,59),(17,34),(18,50),(19,36),(20,52),(21,38),(22,54),(23,40),(24,56),(25,42),(26,58),(27,44),(28,60),(29,46),(30,62),(31,48),(32,64)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(33,64),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(46,61),(47,62),(48,63)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,27),(3,15),(4,25),(5,13),(6,23),(7,11),(8,21),(10,19),(12,17),(14,31),(16,29),(18,22),(24,32),(26,30),(33,64),(34,48),(35,62),(36,46),(37,60),(38,44),(39,58),(40,42),(41,56),(43,54),(45,52),(47,50),(49,63),(51,61),(53,59),(55,57)]])
Matrix representation of C23.19D8 ►in GL4(𝔽17) generated by
0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 9 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
13 | 11 | 0 | 0 |
6 | 13 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [0,4,0,0,13,0,0,0,0,0,0,9,0,0,2,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[13,6,0,0,11,13,0,0,0,0,13,0,0,0,0,4],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C23.19D8 in GAP, Magma, Sage, TeX
C_2^3._{19}D_8
% in TeX
G:=Group("C2^3.19D8");
// GroupNames label
G:=SmallGroup(128,966);
// by ID
G=gap.SmallGroup(128,966);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,456,422,58,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^8=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^7>;
// generators/relations
Export